Efficient 2-Nitrophenol Chemical Sensor Development Based on Ce2O3 Nanoparticles Decorated CNT Nanocomposites for Environmental Safety

نویسندگان

  • Mohammad M. Hussain
  • Mohammed M. Rahman
  • Abdullah M. Asiri
چکیده

Ce2O3 nanoparticle decorated CNT nanocomposites (Ce2O3.CNT NCs) were prepared by a wet-chemical method in basic medium. The Ce2O3.CNT NCs were examined using FTIR, UV/Vis, Field-Emission Scanning Electron Microscopy (FESEM), X-ray electron dispersive spectroscopy (XEDS), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD). A selective 2-nitrophenol (2-NP) sensor was developed by fabricating a thin-layer of NCs onto a flat glassy carbon electrode (GCE, surface area = 0.0316 cm2). Higher sensitivity including linear dynamic range (LDR), long-term stability, and enhanced electrochemical performances towards 2-NP were achieved by a reliable current-voltage (I-V) method. The calibration curve was found linear (R2 = 0.9030) over a wide range of 2-NP concentration (100 pM ~ 100.0 mM). Limit of detection (LOD) and sensor sensitivity were calculated based on noise to signal ratio (~3N/S) as 60 ± 0.02 pM and 1.6×10-3 μAμM-1cm-2 respectively. The Ce2O3.CNT NCs synthesized by a wet-chemical process is an excellent way of establishing nanomaterial decorated carbon materials for chemical sensor development in favor of detecting hazardous compounds in health-care and environmental fields at broad-scales. Finally, the efficiency of the proposed chemical sensors can be applied and utilized in effectively for the selective detection of toxic 2-NP component in environmental real samples with acceptable and reasonable results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of 3-methoxyphenol sensor based on Fe3O4 decorated carbon nanotube nanocomposites for environmental safety: Real sample analyses

Iron oxide ornamented carbon nanotube nanocomposites (Fe3O4.CNT NCs) were prepared by a wet-chemical process in basic means. The optical, morphological, and structural characterizations of Fe3O4.CNT NCs were performed using FTIR, UV/Vis., FESEM, TEM; XEDS, XPS, and XRD respectively. Flat GCE had been fabricated with a thin-layer of NCs using a coating binding agent. It was performed for the che...

متن کامل

Facile and Green Synthesis of Palladium Nanoparticles-Graphene-Carbon Nanotube Material with High Catalytic Activity

We report a facile and green method to synthesize a new type of catalyst by coating Pd nanoparticles (NPs) on reduced graphene oxide (rGO)-carbon nanotube (CNT) nanocomposite. An rGO-CNT nanocomposite with three-dimensional microstructures was obtained by hydrothermal treatment of an aqueous dispersion of graphene oxide (GO) and CNTs. After the rGO-CNT composites have been dipped in K₂PdCl₄ sol...

متن کامل

A general strategy for the preparation of carbon nanotubes and graphene oxide decorated with PdO nanoparticles in water.

The preparation of carbon nanotube (CNT)/PdO nanoparticles and graphene oxide (GO)/PdO nanoparticle hybrids via a general aqueous solution strategy is reported. The PdO nanoparticles are generated in situ on the CNTs and GO by a one-step "green" synthetic approach in aqueous Pd(NO(3))(2) solution under ambient conditions without adding any additional chemicals. The production of PdO is confirme...

متن کامل

Hierarchical AuNPs-Loaded Fe3O4/Polymers Nanocomposites Constructed by Electrospinning with Enhanced and Magnetically Recyclable Catalytic Capacities

Gold nanoparticles (AuNPs) have attracted widespread attention for their excellent catalytic activity, as well as their unusual physical and chemical properties. The main challenges come from the agglomeration and time-consuming separation of gold nanoparticles, which have greatly baffled the development and application in liquid phase selective reduction. To solve these problems, we propose th...

متن کامل

Gold-carbon nanotube nanocomposites: synthesis and applications

Nanocomposites are combinations of nanomaterials with other molecules or nanoscaled materials, such as nanoparticles or nanotubes. In general, these novel nanocomposites have different physical and chemical properties from the constituent particles or wires, and will thus allow new kinds of applications. Among these nanocomposites, gold-carbon nanotube (AuCNT) composites are of particular inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016